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Abstract: In this paper, numerical simulation based on generalized Crank-Nicolson method 

(which is also known as theta method) was performed in case of 2D diffusion problem with 

asymmetrical convection B.C on the walls. Also, model calibration was involved during 

numerical simulation model. Additionally, comparison between numerical and analytical 

solutions was made while qualitative compatibility was found between solutions. Moreover, 

maximum error between these solutions was found to be about 7.5%. Comparisons between 

other studies and current numerical and analytic solutions have been proved to be coincided. 
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1   Introduction 

Theta method which is also known as 

Crank-Nicolson (C-N) [1] generalized 

theory is defined as numerical weighted 

average scheme representation. This 

method is used in many fields, such as 

chemical and biological reactions and 

interactions [2-5], mechanics [6-12] and 

economics [13-15] applications. The 

mathematical behavior of the generalized 

formulation was studied by Nassif [16], 

Gurolay & Morris [17] and others [18-20]. 

In 1991, Stuart & Peplow [20] published 

their theoretical findings on dynamical 

equations system representation by 

numerical theta method. The existence of 

spurious asymptotic solutions which are 

not caused by numerical solution were 

obtained and compared to the current 

solution.  

In this essay, theta method application 

will be demonstrated in case of 2D 

Diffusion equation with convection on the 

wall. Two-dimensional diffusion equation 

is derived using Fick's second law [19] and  

 

 

 

its generalizations by Maxwell and others 

[20] who predict how diffusion causes the 

concentration to be varied over time. 

Numerical solutions for flowing fluid 

between two parallel plates without and 

with advection were obtained by Shariati et 

al. [21] and Appadu & Gidey [22]. A 

viscoelasticity fluid flow application with 

time-dependent parameter using theta 

method was studied by Chrispell et al. 

[23]. Moreover, temperature effect on 

transient free convection in MHD flow 

between two vertical parallel plates with 

variable mass diffusion was investigated 

by Rajput & Sahu [24]. In the latter study 

velocity profile and skin-friction were 

calculated and found. Convergence and 

stability of implicit methods for jump-

diffusion systems were studied by Higham 

& Kloeden [25]. He was found that mean-

square stability properties have been 

improved using implicit methods.  

Convection at the boundary in case of 

temperature distribution was studied by 

Jordan Wall [26], Necati Özisik [27] and 
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Philippe Laval [28]. Also, numerical and 

analytical solution heat equation with 

derivative boundary conditions was studied 

by Cheniguel [29]. Comparisons between 

these studies and current study have been 

done and will be presented continuously. 

The aim of this study is to solve two-

dimensional steady state diffusion fluid 

problem with convective B.C. between two 

parallel plates using numerical and 

analytical solution development. Implicit, 

semi-implicit and explicit methods will be 

examined and compared by substituting 

different values. Moreover, comparison 

between analytical and numerical solutions 

will be presented and compared together 

with other studies. 

2   Flow Field Equations 

Consider a fluid with initial 

concentration 0c which enters between two 

parallel plates with given distance L

according to Fig. 1. 

Fig. 1. 2D fluid diffusion model between 

two parallel plates. 

 

It is assumed that mass transform occurs 

only by diffusion phenomena in the 

vertical direction along y-axis. Whilst in 

the horizontal direction (x-axis) mass 

transform is dominated mainly by 

convection phenomena.  The 2D diffusion 

steady state parabolic equation is given by 

[29-31]: 
2

2
,  0,  0

C C
X Y L

Y X

 
   

 
,   (1) 

while
2

xD
X

L v
 and

y
Y

L
 .  

Where D represents diffusion constant, v is 

the flow velocity and L is the distance 

between the parallel plates.   

 

Also, initial conditions are: 

0,0 , 1X Y L C    .      (2) 

The convection conditions on the walls 

are: 

1

2

0, , 0

0, 0, 0

C
X Y L h C

Y

C
X Y h C

Y


    


    

 

,    (3) 

while ,  1, 2,..i
i

Lk
h i

D
  Also, 10,1,1.01 h

and 12 75.0 hh  .  

 

Here, the problem has asymmetrical 

boundary conditions. Moreover, numerical 

calculation of ),( YXC should be performed 

until: 

0 0( ,0) 0.05 ,  1C X C C  .     (4) 

3   Numerical Methods Formulation 

Numerical solution procedure for solving 

parabolic equation has been studied by 

[30-33]. Theta method formulation yields 

the following numerical algebraic 

equation: 

 , 1 , 1, , 1,

2

1, 1 , 1 1, 1

2

2
1

2

i j i j i j i j i j

x y

i j i j i j

y

C C C C C

C C C


 




  

    

   
   

 
 

  
  

 
 

               (5) 

while
2

x

y

R



 . Next, three methods which are 

derived from Eq. (5), will be discussed here. 

 

Explicit method 

Substituting 0 leads to the following 

explicit form: 

 

, 1 , 1, , 1,

2

, 1 , 1, , 1,

2

2

i j i j i j i j i j

x y

i j i j i j i j i j

C C C C C

C C R C C C

 

  

  

  




   

(6) 

This method has conditioned stability 

according to: 
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1 2 (1 cos( )), 1R
P


     .    (7) 

while 0.5R  . 

 

C-N semi - implicit method 

Substituting 5.0 leads to the following 

semi-implicit form: 

 

 

, 1 ,

1, , 1, 1, 1 , 1 1, 1

1, 1, 1 1, 1

, , 1 , 1

2 2
2

2(1 )

2(1 ) ( )

i j i j

i j i j i j i j i j i j

i j i j i j

i j i j i j

C C

R
C C C C C C

R C R C C

R C R C C



      

    

 

 

    



   

  

                   (8) 

while 13,1  Nj i . C-N method has 

unconditioned stability [29] for this kind of 

problem according to: 

1 (1 cos( ))

,  1

1 (1 cos( ))

R
P

R
P



 


 

 

 

 .   (9) 

while 0P   . 

 

Implicit method 

Substituting 1 leads to the following 

implicit form: 

 

, 1 , 1, 1 , 1 1, 1

2

, 1 , 1, 1 , 1 1, 1

2

2

i j i j i j i j i j

x y

i j i j i j i j i j

C C C C C

C C R C C C

 

     

     

  




   

 .

             (01) 
This method has unconditioned stability 

according to: 

1
,  1

1 2 (1 cos( ))R
P

 


 

 

. (10) 

Initial conditions numerical formulation is 

given by: 

0 , 0 : ( , ) 1

C 1,
2j meanmean

i j

Y L X C X Y

M
i

   

 
 (12) 

while1 ,  1i M j N    . M will be 

determined by convergence condition

( ,0) 0.05C x  . Boundary conditions 

transpose numerical formulation 

( , ) ( , )X Y i j  yields: 

1 1

,2 ,1 ,2

,1

1

, 0 : 0

1
( )

i i i

i

C C
Y L X h C h C

Y Y

C C CC
C

Y Y
Y h

Y

 
      

 




  

 
 



 (13) 

2

, , 1

, 1

,

2

0, 0 : 0

1
( )

i N i N

i N

i N

C
Y X h C

Y

C CC

Y Y

C
C

Y h
Y






   








 





 


 (14) 

while 1i  and N is an arbitrary constant. 

Since C-N method has unconditioned stability 

and yields averaged values which are lined 

between the two other methods this method 

will be choose for solution. Moreover, R
parameter has no influence on stability, but 

only on method accuracy. 

 

Thomas Algorithm 

 In this section general formulation for 

solving numerical algebraic equation using 

Thomas algorithm will be introduced. 

Thomas tri-diagonal matrix is written by: 

1 1 1

2 2 2,2

3 3 3 3,3

4 4 4

,

..

..

..

N N N

i

i

i N

Cb c d

Ca b c d

a b c

a b dC  

    
    
    
    
     
    
    
    
        

             (15) 

From here, matrix parameters (15) will be 

calculated using Table 1, for each 

numerical method. In the next section 

analyzing of C-N numerical method results 

will be presented due to stability and 

averaged values magnitude as was 

explained in the previous section. 
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Table 1 Thomas algorithm parameters applications for theta method cases. 

Parameters/Method Explicit Method ( 0 ) C-N Method ( 5.0 ) Implicit Method ( 1 ) 

ja  R  R  R  

jb  R21   R12  R21  

jc  R  R  R  

jd  1,1  jiC      1,1,11,1 12   jijiji RCCRCR

 

jiC ,1  

ji,  13  ,1  Nji while N is arbitrary 

4   Model Calibration 

 In this section C-N numerical method 

results will be examined. Flow 

concentration graphs for selected values of

2

x

y

R



  near the wall ( 0Y  ) and in the 

middle section ( 0.5Y  ) are illustrated in 

Fig. 2.a-b. "Jumping" phenomenon of the 

fluid concentration occurs when 1h  

parameter decreases with an increase in R

parameter value. The current physical 

model cannot be applied when 1R h . In 

other words, convection on the wall is 

found to be meaningless for specific R and

1h ratios relative to other phenomenon 

which takes step in x direction. Therefore, 

one should use for example, general 

diffusion equation form which includes 

viscosity effect, or by considering other 

factors according to the specific problem.  

 

 

 

Moreover, it seems that a difference 

between fluid concentration accuracy does 

exist between 0.5Y  and 1Y  sections. 

The smooth difference between walls 

concentration fluid is derived due to B.C. 

on the lower wall according to Eq. (3). 

 Examination of various convection 

parameter 1h values in the context of fluid 

concentration on the wall ( 0Y  ) and in 

the middle section ( 0.5Y  ) is illustrated 

in Fig. 3.a-b. In similar way to the previous 

case, it seems that solution accuracy 

decreases with an increase in 1h parameter  

value. Finally, it can be understood from 

comparison between Fig.2.a-b and Fig.3.a-

b that fluid concentration is more sensitive 

to 1h parameter than R parameter values. 

Next section discussion will be focused on 

specific numerical results. 
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Fig. 2.  Flow concentration for different R values at the: a. Middle section (Y=0.5). b. Lower wall 

(Y=0) while 1 0.5h  . 

 

 

Fig. 3.   Flow concentration for different 1h values at the: a. Middle section (Y=0.5). b. Lower wall 

(Y=0) while 25R  . 

5   Numerical Results  

 In this section numerical results will be 

presented for the following specific 

parameters:  

 0.01, 0.02 25x y R      

and 1 0.05h  . 

 0.1, 0.02 250x y R      

and 1 0.01h  . 

 

On the one hand, it seems from Fig. 4.a-b 

that ,h R parameters yield two different  

 

 

 

quantitative results. On the other hand, 

qualitative solutions are similar in two-

dimensional channel domain as shown in 

Fig.5.a-b. Flow concentration lines as 

shown in Fig. 6.a-b obtain their maximum 

and minimum values at 1Y  and 1Y   , 

respectively. In the next section, analytical 

solution will be developed for results 

evaluation and comparative purposes. 
 

  

 

(a) 

) 
(b) 

) 

(a) 

) 
(b) 

) 
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Fig. 4.  Flow concentration for different 1,h R values at the: Middle section (Y=0.5), Upper (Y=1) and 

Lower wall (Y=0) while 25,250R  . 

Fig. 5. Flow concentration in X-Y directions for different 1,h R values: a. 1 0.05, 25h R  . b. 

1 0.01, 250h R  .

 

  

 

 

 

 

 
Fig. 6. Flow concentration lines in X-Y directions for different 1,h R values: a. 1 0.05, 25h R  . b.

1 0.01, 250h R  . 

 

  

(a) 

) (b) 

) 

(a) 

) 

(b) 

) 

(b) 

) 

(a) 

) 
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6   Analytical Solution 

 The mathematical formulation of the 

problem is to find concentration function

( , )C X Y such that:        

  
2

2
,  0,  0

C C
X Y L

Y X

 
   

 
,  (16) 

With convective B.C. on the wall as 

follows:                

1

2

( , ) ( , ) 0

( ,0) ( ,0) 0

C
h C X L X L

Y

C
h C X X

Y


  


  

 

.     (17) 

while 0X  . Initially, the concentration 

fulfills:            

  (0, ) 1,  0C Y Y L   .   (18) 

Now, analytical solution will be performed 

using separate variable procedure according 

to Necati Özisik and Wall notes [26-27]. 

Assume that solution has the following 

form:             

   ( , ) ( ) ( )C X Y U X T Y .    (19) 

Substituting (19) into (16) leads to: 
2

2

2

1 1T U

T Y U X


 
  

 
.   (20) 

Hence, the solution for ( )U X is: 

  
2

1 1 0( ) ,  1XU X a e a C   .   (21) 

while 1a is constant and ( )T Y is the solution 

of the following eigenvalue problem: 

      02  TT  ,     (22) 

Where homogenous solution is given by:  

  )sin()cos( 32 YaYaT   ,   (23) 

while 32 ,aa are constants and 0 (if

0 then problem is diverged). 

 

In order to find 32 ,aa  B.C. (17) will be 

written such as: 

 2 3 3 2

1

2 3

2

cos( ) sin( ) cos( ) sin( )a L a L a L a L
h

a a
h


   




   



 


              (24) 

 

 

 

 

From here, we get the following relation: 

 
 

 

2 1

2 1 1

1 2

2

1 2

0.75 , 1

1

2 2

1

cos( ) sin( ) sin( ) cos( ) 0

tan

1.75
tan

0.75

h h L

L L L L
h h h

h h
L

h h

h

h

  
   






 


 

   
      

   













                  (25) 

Where ( )T Y form will be given by: 

 3

2

( ) cos( ) sin( )T Y a Y Y
h


 

 
  

 
.    (26) 

 

Therefore, the complete solution is of the 

form: 

2

1 2

( , ) cos( ) sin( ) X

m

m

C X Y a Y Y e
h


 






 
  

 


                 (27) 

The specific eigenfunctions are obtained by 

incorporating the initial conditions: 

1 2

( ) 1 cos( ) sin( )m

m

f Y a Y Y
h


 





 
   

 
 ,  (28) 

which expresses the representation of ( )f Y

in terms of eigenfunctions and requires that:

20

2

20

2

2 2

2 2 2

cos( ) sin( )

cos( ) sin( )

sin( ) 1 cos( )

sin(2 ) 1 cos(2 )
1 1

4 2 2

m

L

L

a

Y Y dY
h

Y Y dY
h

L L

h

L L L

h h h


 


 

 



   








 

 
 




      
         
         





                  (29) 

7   Comparison & Discussion 

 In this section comparison between 

numerical solution and analytical solution 

will be presented and discussed. Qualitative 

compatibility between analytic and 
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approximate solutions was found as shown 

in Fig. 7. a. Maximum error value between 

solutions is about 7.5% as calculated using 

Fig. 7. b. The main reasons for this 

difference are derived from: 

 Numerical solution convergence 

condition (4) – "Stop Condition".  

 Number of members in series eq. 

(27). 

 Numerical solution discretization.  

Moreover, it seems that both solutions have 

similar qualitative behavior as shown in 

Fig. 7-9.  

 Analogous behavior between 

concentration and temperature difference 

does exist. Therefore, comparisons to heat 

and mass transfer studies will be performed. 

Analytical and numerical solutions are 

coincided with Khan and Gorla results [34] 

(see Fig. 9. a from Ref. [34] compared to 

Fig. 7 in the current article). The graph in 

Fig. 10.a predicts different nano-fluids 

temperature behavior over a non-isothermal 

stretching wall with convective boundary 

condition. Another study deals with 2D heat 

transfer problem including mixed boundary 

conditions was studied by Chaabane et al 

[35]. This problem was solved numerically 

using Lattice Boltzmann simulations 

method. It can be observed from Fig. 10.b 

that solution qualitative behavior and order 

of magnitude are similar to current study 

results as compared to Fig. 7. Sakimoto and 

Zuber have investigated convective cooling 

phenomenon in lava tubes. Their study 

explains the wide range of implied cooling 

rates by considering forced convection as a 

dominant cooling process in lava tubes. Fig. 

11 relates to mean temperature distribution 

versus the distance from the vent through 

steady laminar flow between parallel plates 

with constants temperature and material 

properties. Correspondence between latter 

study results and current study does exist in 

the qualitative and quantitative (order of 

magnitude) aspects (compare Fig. 11 to Fig. 

7). 

 

 

  

 
Fig. 7. Comparative calculation methods for flow concentration at various Y sections. 
 

 

 

(a) 

) 

(b) 

) 
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Fig. 8. Comparative calculation methods for X – Y directions: a. Analytical solution for flow 

concentration. b. Numerical solution for flow concentration.  
 

 

 
Fig. 9. Comparative calculation methods for X – Y directions: a. Analytic solution for Flow 

Concentration lines. b. Numerical solution for Flow Concentration lines. 
 

 

  
 

Fig. 10. a. Effect of generalized Prandtl number Pr and thermophoresis parameter on dimensionless 

temperature for different non-Newtonian nanofluids by Khan and Gorla [34]. b. Comparison of 

(a) 

) 

(b) 

) 

(a) 

) 
(b) 

) 

(a) 

) 

(b) 

) 
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centreline (x/X=0.5) temperature in the presence and the absence of heat generation by R. Chaabane et 

al [35]. 
 

 
Fig. 11. Temperatures predicted for parallel plate flow with a height: width ratio of  1:5, an entrance 

temperature of 1160
o
C, and a wall temperature of 1077

o
C  by Sakimoto and Zuber [36].  

8   Conclusion 

 This study presents numerical 

simulation of 2D diffusion problem with 

asymmetrical convection on the walls 

based on generalized Crank-Nicolson 

method and Thomas algorithm. In order to 

estimate numerical parameter influences, 

model calibration was performed during 

numerical simulation model. It was found 

that
2

x

y

R



 and 1h parameters have great 

influence on solution accuracy only. The 

current physical model cannot be applied 

when 1R h . Taking it in account, one 

should use general diffusion equation form 

including viscosity effect. It seems that 

solution accuracy is decreasing with 1h

increasing value. Also, it was found that 

fluid concentration absolute value is more 

sensitive to 1h parameter than R parameter 

values. Flow concentration results obtained 

their maximum and minimum values at

1Y  and 1Y   , respectively. Comparison 

between numerical and analytical solution 

was made while qualitative compatibility 

was found between solutions. Moreover, 

maximum error between these solutions 

was found to be about 7.5%.  Comparisons 

between other studies [34-36] on heat and 

mass transfer field and current numerical 

and analytical solution have been proved to 

be coincided. 
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